-7.14 ± 2.11 . A set -1.1 if -1.1 if -1.1 if -1.1 $©$ Springer-Verlag 1986

Intento

Non-equilibrium rate coefficients and isotope effect with bimolecular ion-(polar) molecule reactions in xenon

Wolf gang Stiller, Reinhard Schuster, and Rainer Schmidt

Central Institute of Isotope and Radiation Research, Academy of Sciences of the GDR, DDR-7050 Leipzig, Pe:rmoserstrasse 15, German Democratic Republic

(Received May 26, reviised August 15/Accepted September 3, 1986)

Using the Fokker-Planck version of an approximate Boltzmann equation for the ion (translational) energy distribution function f_I the departure, Δk , of the non-equilibrium ion-(polar) molecule reaction rate coefficient $k^{(non)}$ from its equilibrium value $k^{(eq)}$ is calculated. Δk enhances considerably with an increase of the dipole moment of the reacting molecular species ("locked dipole" reaction model). But the Δk -values, e.g. for reactions of H⁻(D⁻) and nitromethane in xenon enhance also with increasing ratio ρ of the concentrations of $CH₃NO₂$ and Xe and decrease with enhancing gas temperature T. The reaction-induced (translational) non-equilibrium effect leads to a (nonequilibrium) kinetic isotope effect depending on ρ and T. At $T = 300$ K the example yields $k_H/k_D = 1.345$ ($\rho = 5 \cdot 10^{-4}$), = 1.409 ($\rho = 10^{-5}$) and = 1.414 \simeq $k_{H}^{(eq)}/k_{D}^{(eq)}$ ($\rho \leq 10^{-6}$).

Key words: Boltzmann equation $-$ Dipole moment $-$ Gases $-$ Ions $-$ Reaction kinetics

Basic relations

Let us assume a dilute inert carrier gas (C) of the temperature T in which the following components are dispersively distributed in small concentrations: ions (I) and reactive (polar) molecules M with concentrations in the following interrelation

 $n_l \ll n_M$, n_c . (1)

When in a gas a point ion (mass m_I , charge q_I , velocity v_I) reacts with a polar molecule (mass m_M , polarizability α_M , permanent dipole moment μ_M , velocity v_M) on the basis of electrostatic interaction potentials (induced and permanent dipole forces) then the energy-dependent cross section σ_R for a mutual capture of the reaction partners can be chosen as follows [1]:

$$
\sigma_R = \sigma_L + \sigma_D = \sigma_{LD} \tag{2}
$$

$$
\sigma_L = \pi q_I (2\alpha_M)^{1/2} E^{-1/2}
$$
 (2a)

$$
\sigma_D = \pi q_I \mu_M E^{-1} \tag{2b}
$$

 $(E = (m/2)v^2$ kinetic energy of the relative motion of an ion-molecule pair, m its reduced mass, v relative velocity $|v_1 - v_M|$). For non-polar molecules ($\mu_M = 0$) Eq. (2) leads to the Langevin-(Gioumousis-Stevenson) cross section $\sigma_R = \sigma_L \sim$ $E^{-1/2}$. For polar molecules $(\mu_M \neq 0)$ Eq. (2) gives the adiabatic "locked-dipole" approximation (LD) resulting in $\sigma_R = \sigma_{LD}$.

If the velocity (or translational energy) distribution functions f_t and f_{M} can be assumed to be the Maxwellians (i.e. translational equilibrium functions) $f_f^{(eq)}$ and $f_{\mathcal{M}}^{(eq)}$, respectively, then an integration of $\sigma_R v$ (weighted with $f_f^{(eq)} \cdot f_M^{(eq)}$) over all the velocities v_I and v_M leads to

$$
k^{(eq)}(T) = k_L^{(eq)} + k_D^{(eq)}(T)
$$
\n(3)

$$
k_L^{(eq)} = (2\pi q_I / m^{1/2}) \alpha_M^{1/2}
$$
 (3a)

$$
k_D^{(eq)}(T) = (2\pi q_I/m^{1/2})\mu_M(2/\pi k_B T)^{1/2}.
$$
\n(3b)

Experiments with the flowing-afterglow and ICR-techniques have shown good agreement with the theory if the term in Eq. (3b) is multiplied by a "dipole locking constant" C lying between 0 (Langevin case, L) and 1 (locked dipole case, *LD*). Bowers and coworkers succeeded in calculating $C = C(\mu_M/\alpha_M^{1/2}, T)$, $0 < C < 1$ from a microscopic (statistical) point of view [2]. In the following we will use Eq. (3) $(C=1)$ for simplicity.

As is known from Prigogine and coworkers [3] the velocity (energy) distribution functions can be disturbed by the energetics of the proceeding reaction itself leading to non-equilibrium distribution functions $f_I^{(non)}$ and $f_M^{(non)}$ which result in a non-equilibrium rate coefficient $k^{(\text{non})}$. The perturbation effect can be described generally by the departure Δk defined by

$$
\Delta k = \left| \frac{k^{(\text{non})} - k^{(\text{eq})}}{k^{(\text{eq})}} \right| \tag{4}
$$

$$
k^{(\text{non})} = (n_{I}n_{M})^{-1} \int_{3}^{1} \int_{3}^{1} dv_{I} dv_{M} v \sigma_{LD}(v) f_{I}^{(\text{non})}(v_{I}) f_{M}^{(\text{non})}(v_{M})
$$

= $k_{L}^{(\text{non})} + k_{D}^{(\text{non})}$ (5)

Non-equilibrium rate coefficients 359

$$
k_L^{(\text{non})} = (n_I n_M)^{-1} \int_3 \int_3 dv_I dv_M v \sigma_L(v) f_I^{(\text{non})}(v_I) f_M^{(\text{non})}(v_M)
$$

= $k_L^{(\text{eq})}$ (5a)

$$
k_D^{(\text{non})} = (n_I n_M)^{-1} \int_3 \int_3 dv_I dv_M v \,\sigma_D(v) f_I^{(\text{non})}(v_I) f_M^{(\text{non})}(v_M). \tag{5b}
$$

In what follows $k^{(eq)}$, $k^{(non)}$, and Δk -values of ion-(polar) molecule reactions with a variation of the molecular property μ_M and the parameters T and $\rho = n_M/n_C$ will be investigated.

Boltzmann equation for $f_f^{(non)}$

Under the assumptions of Eq. (1) the change of the non-equilibrium distribution function $f_i^{(non)}(\vec{v}_h, t)$ in velocity \vec{v}_l and time t can be described as follows

$$
\frac{\partial f_I^{(\text{non})}}{\partial t} = \left(\frac{\partial f_I}{\partial t}\right)_{IC}^{el} + \left(\frac{\partial f_I}{\partial t}\right)_{IM}^{R}
$$
(6)

The first term $(r.h.s.)$ of Eq. (6) is the collision integral of elastic IC-collisions which can be approximated for a mass ratio $m_I/m_C \ll 1$ by the differential expression:

$$
\left(\frac{\delta f_I}{\delta t}\right)_{IC}^{el} = \frac{n_C m_I}{v_I^2 m_C} \frac{\partial}{\partial v_I} \left[v_I^3 \sigma(v_I) \left(\frac{k_B T}{m_I} \frac{\partial f_I^{\text{(non)}}}{\partial v_I} + v_I f_I^{\text{(non)}} \right) \right]
$$
(7)

 $\sigma(v_i)$ (elastic) cross section of elastic IC-collisions. The second term (r.h.s.) describes reactive IM -collisions:

$$
\left(\frac{\delta f_I}{\delta t}\right)_{IM}^R = -n_M v_I \sigma_R(v_I) f_I^{\text{(non)}} \quad \text{if } |v_I - v_M| \sim v_I, \quad m_I/m_M \ll 1 \tag{8}
$$

$$
\sigma_R(v_I) = \sigma_{LD}\left(\frac{m}{2}v_I^2\right) \text{ according to Eq. (2)}
$$

H-collisions are neglected because their frequency is much smaller than the frequencies of *IC-* and *1M-collisions.* It is assumed, too, that elastic *CC-collisions* **-** the most frequent kind of collisions - always maintain a Maxwellian distribution $f_C^{(eq)}(T)$. The same should be more or less true for the molecules:

$$
f_M^{(\rm non)}(T) \approx f_M^{(\rm eq)}(T).
$$

Equation (6) gives - in connection with Eqs. (7) and (8) - a partial differential equation (PDE) for $f_I^{(non)}(v_I, t)$. The initial distribution is assumed to be $f_I^{(non)}(v_I, 0) = f_I^{(eq)}(T_I(0) = T)$. The boundary conditions are $F_I^{(non)}(0, t) = F_I^{(non)}$ $(\infty, t) = 0$ where $F^{(non)} \sim v_L^2 f_I^{(non)}$. The parabolic PDE can be solved by a suitable numerical method. Here we separated the variables v_i and t which leads to an eigenvalue problem. For steady-state investigations, which we are interested in,

it is sufficient, however, to consider only the lowest eigenvalue. If we know $f_t^{(non)}$ we can formulate the rate coefficients $k^{(\text{non})}$ and $k^{(\text{eq})}$ for ion-(polar) molecule reactions $(m_I \ll m_M, m_C)$ as follows [4]:

$$
\lim_{\tau \to \infty} k^{(\text{non})} = v_0 \int_0^\infty x \sigma_{LD}(x) P(x, \tau) dx
$$
\n(9)
\n
$$
P(x, \tau) = F(x, \tau) n_I(0) / n_I(\tau) \int_0^\infty P(x, \tau) dx = 1
$$
\n
$$
x = v/v_0, \qquad v_0 = (2k_B T / m_C)^{1/2}
$$
\n
$$
\tau = t/t_0, \qquad t_0 = (n_C \delta_C v_0 \sigma_0)^{-1}, \quad \delta_C = 2m_I / m_C, \qquad \sigma(x) = \sigma_0 \bar{\sigma}(x)
$$
\n
$$
k^{(\text{eq})} = (4/\pi^{1/2}) v_0 \int_0^\infty \sigma_{LD}(x) x^3 \exp(-x^2) dx.
$$
\n(10)

Results and discussion

1. Δk as a function of μ_M and T

In order to assess the maximum dipole-moment effect on Δk the LD-model according to Eq. (2) is used. In this case the quantity Δk from Eq. (4) can be split up into two factors:

$$
\kappa_M = \frac{k_D^{(eq)}}{k_L^{(eq)} + k_D^{(eq)}} = y(1+y)^{-1} \qquad y = \mu_M / \left(\frac{\pi}{2} \alpha_M k_B T\right)^{1/2} \tag{11}
$$

and

$$
\Delta k\{f_I^{(\text{non})}\} = \left|1 - \frac{k_D^{(\text{non})}\{f_I^{(\text{non})}\}}{k_D^{(\text{eq})}}\right|.
$$
 (12)

The factorization is possible because $k_{LD}^{(\text{non})} = k_{L}^{(\text{non})} + k_{D}^{(\text{non})}$ (cf. Eq. (5)) and $k_L^{\text{(non)}} = k_L^{\text{(eq)}}$. The latter is a singular property of the Langevin model (cf. [5, 6]). The "equilibrium" quantity κ_M depends only on the data of the molecule $M(\alpha_M, \alpha_M)$ μ_M , $T_M^{\tilde{R}}$) where $T_M^{\tilde{R}}$ is the rotational temperature of the molecule which for simplicity is always considered to be equal to T. For a homologous class of reactions between a fixed polar molecule and various ions the factor κ_M is a constant, Table 1 gives some κ_M -values at $T = 200$, 300, and 400 K.

Molecule M				Factor	$\kappa_M(y)$	
	$\alpha_M \cdot 10^{24}$ in $cm3$	μ_M in D	$\mu_M \cdot \alpha_M^{-1/2}$ in $D \cdot cm^{-3/2}$	200K	300 K	400 K
NH,	2.26	1.47	0.98	0.82(4.69)	0.79(3.83)	0.77(3.32)
CH ₃ CHO	4.40	2.69	1.28	0.86(6.16)	0.83(5.03)	0.81(4.35)
CH ₃ NO ₂	5.20	3.46	1.52	0.88(7.28)	0.86(5.95)	0.84(5.15)
CH ₃ CN	4.56	3.92	1.84	0.90(8.81)	0.88(7.20)	0.86(6.23)
HCN	2.59	2.98	1.85	0.90(8.89)	0.88(7.26)	0.86(6.29)

Table 1. Factor κ_M for various molecules M

The second factor, $\Delta k \{f_I^{(non)}\}$ is a function of $f_I^{(non)}$. According to Eqs. (7) and (8) the "non-equilibrium" quantity again depends on the properties of the molecular component (including n_M), but also on the parameters of the ions (q_I , m_I) and the carrier gas $(m_C, n_C, T_C = T)$. Further $f_I^(non)$ is affected by the elastic cross section $\sigma(x)$.

Figure 1 presents results of numerical Δk -calculations for a typical situation: $\alpha_M = 5.2 \cdot 10^{-24} \text{ cm}^3$, $m_I = m_{H^-}$, $m_C = m_{Xe}$ $\sigma = \text{const} = 40.1 \cdot 10^{-16} \text{ cm}^2$, $\rho =$ $n_M/n_c = n_M/n_{Xe} = 10^{-3}$. As shown in Fig. 1, Δk increases with growing dipole moment μ_M which was varied between 0 and 4 D. A higher μ_M -value corresponds to a higher reactivity between H^- and M (cf. Eqs. (2) and (8)) leading to stronger deviations from the equilibrium distribution function $f_f^{(eq)}$. Hence Δk has to increase with μ_M . Conversely a higher gas temperature T enhances the elastic collision term (6) which tends to bring $f_I^{(non)}$ into the Maxwellian form $f_I^{(eq)}$. Therefore the Δk -curves are lower for higher temperatures. At the point μ_M = 3.46 D all the parameters coincide with the data for the reaction $H^-+CH_3NO_2$ in xenon. For this reaction Δk diminishes from 32.2% at 200 K via 22.3% (300 K) to 19.1% at 400 K ($\rho = 10^{-3}$).

In addition, in Fig. 1 is shown the "saturation curve" of the first factor κ_M (300 K) for CH₃NO₂ weakened by a factor 0.25. At $T = 300$ K the product $\Delta k = \kappa_M$. $\Delta k\{f_H^{(non)}\}$ has the factors $\kappa_M = 0.856$ and $\Delta k\{f_H^{(non)}\} = 0.260$ ($\rho = 10^{-3}$).

- 2. Δk as a function of $\rho = n_M/n_C$
- $(H^-+CH_3NO_2 \rightarrow CH_2NO_2^- + H_2)$

Figure 2 presents Δk -curves for the proton transfer reaction mentioned above as a function of $\rho = n_M/n_C$ at different temperatures. It appears from Fig. 2 that the non-equilibrium departure increases considerably as the number density ratio ρ rises. For ρ below 10^{-6} Δk is virtually vanishing. In this density region the "reactivity term", Eq. (8), cannot compete with the elastic collision term, Eq. (7), drawing $f^{(eq)}_{H^-}$ to $f^{(eq)}_{H^-}$. With increasing ρ (i.e. with growing n_M at

Fig. 1. Non-equilibrium departure Δk (abs.) as a function of μ_M

Fig. 2. Δk (%) as a function of the density ratio $n(CH_3NO_2)/n(Xe)$

fixed n_c) term (8) prevails more and more over term (7). Hence Δk is already some per cent if ρ lies between 10^{-5} and 10^{-4} . For $\rho \ge 5 \cdot 10^{-4}$ the non-equilibrium effects should not be ignored. The explanation of the temperature effects is the same as with Fig. 1.

3. Concentration-dependent kinetic isotope effect:

 $H^-(D^-)$ + CH₃NO₂ \rightarrow ^{k_H(k_D)</sub> CH₂NO₂ + H₂(HD)}

Let us regard the reaction of H^- and D^- ions with polar CH_3NO_2 molecules in xenon. The elastic collision term (7) contains the mass m_l explicitly. In the case of the H^- reaction the "reactivity term" (8) dominates the term (7) more than in the case of the D⁻ reaction. Thus the non-equilibrium deviations from $f_I^{(eq)}$ (and therefore from $k^{(eq)}$) will be stronger with the H⁻ reaction. That is the reason why for a fixed temperature the Δk -values of the H⁻ reaction are higher than in the D⁻ reaction as can be seen in Fig. 2 for $T = 300$ K.

Finally we want to investigate the ratio $k_H^{(non)}/k_D^{(non)}$ as a function of $\rho = n_M/n_C$. For a fixed concentration n_c of the carrier gas (xenon) the non-equilibrium effects will increase with enhancing concentration of the $CH₃NO₂$ molecules especially in the H⁻ reaction. Hence the ratio $k_H^{(non)}/k_D^{(non)}$ will decrease with growing ρ . Thus the kinetic isotope effect described by $k_H^{(\text{non})}/k_D^{(\text{non})}$ is concentration-dependent. For a very small ratio $\rho < 10^{-6}$, however, we have practically no nonequilibrium effect and therefore no dependence of k_H/k_D on the concentration, i.e. $k_H^{(\text{non})}/k_D^{(\text{non})}$ converges to $k_H^{(\text{eq})}/k_D^{(\text{eq})}$ which is illustrated in Fig. 3.

Mackay and Bohme made an experimental study of proton-transfer reactions in nitromethane at 297 K [7]. They found a value $k_H^{\text{exp}}/k_D^{\text{exp}} \approx 1.34$ for the H⁻(D⁻)reactions. They used helium as carrier gas with a total pressure of 38.7- 68.5 Pa. Unfortunately in helium the non-equilibrium effects are not so pronounced as in xenon. In addition it is impossible to approximate the elastic collision term

in the form (7) because the condition $m_I \ll m_C$ - which is necessary for the validity of (7) – is violated in the case of helium. Nevertheless it is interesting to note that also in the experiments $k_H^{\text{exp}}/k_D^{\text{exp}} \approx 1.34 < k_H^{\text{(eq)}}/k_D^{\text{(eq)}} \approx \sqrt{2}$.

Conclusion

Under the assumptions $m_I \ll m_M$, m_C and $n_I \ll n_M$, n_C a general expression for the non-equilibrium departure Δk has been derived. Numerical Δk -values can be obtained if the (translational) non-equilibrium distribution function $f_I^{(non)}$ of the ions is known which can be determined via an eigenvalue problem.

The kinetic quantity Δk has been calculated for ion- (polar) molecule reactions in a heavy carrier gas C in the framework of a locked-dipole approximation *(LD).* In this case the μ_M -dependence of Δk can be explained via two different factors, κ_M and $\Delta k\{f_I^{\text{non}}\}$; both of them increase with growing μ_M .

For the (anionic) proton-transfer reactions $H^-(D^-) + CH_3NO_2 \rightarrow$ $CH_2NO_2^- + H_2(HD)$ the kinetic parameters $k_{H}^{(eq)}$, $k_{D}^{(eq)}$, $k_{H}^{(non)}$, $k_{D}^{(non)}$, and Δk have been estimated. Δk decreases with enhancing temperature T. The reaction-induced non-equilibrium behaviour of f_I and k leads theoretically to a concentrationdependent kinetic isotope effect $k_H^{(non)}/k_D^{(non)}$ in a heavy inert gas (xenon).

Some remarks should be added to the use of the locked-dipole model $(C = 1)$ in relation to experiments. Like in all the other cases such a model will provide only an upper limit to dipole induced effects. Therefore the (non-equilibrium) isotope effect calculated here appears in its maximum form. This can be understood as follows: Changing from a kinetic situation in which the dipole locking "constant" $C = 1$ to the more realistic case $C < 1$ there is no variation in the equilibrium isotope effect:

$$
k_H^{\text{(eq)}}/k_D^{\text{(eq)}}|_{C<1} = k_H^{\text{(eq)}}/k_D^{\text{(eq)}}|_{C>1}.
$$

This equality comes from the fact that C is a function depending only on the properties of the molecule M. Therefore C remains constant at the transition from the (H^-, M) -reaction to the (D^-, M) -reaction, i.e. $k_H^{(eq)}/k_D^{(eq)} \approx$ $(m_{D} - / m_{H})^{1/2} \approx \sqrt{2}$. But in the case $C < 1$ the quantity $f_{I}^{(non)}$ is less far from f_f^{eq} than in the case $C = 1$ with its stronger dipole effects. Therefore in Fig. 3 the concentration-dependent deviation of the curve $k_H^{(non)}/k_D^{(non)}$ from the (broken) line for $k_H^{(eq)}/k_D^{(eq)} \approx \sqrt{2}$ should be less pronounced than in the case $C = 1$. Nevertheless, it should be tried to measure the (reduced) isotope effect $(C<1)$, because it offers the possibility of testing the phenomenon of a translational non-equilibrium effect (caused by the reaction) by variation of the concentrations n_M and n_C . By investigating the relative quantities k_H/k_D (and not the absolute k-values) it can be hoped that uncertainties in the choice of the reactive cross section for the (H^-, M) -reaction and its very similar counterpart of the (D^-, M) reaction will cancel each other.

For an experimental verification of the isotope effect calculated (one-channel) proton transfer reactions $H^-, D^- + M$ should be preferred in which M is a polar molecule with a high dipole locking "constant" C, i.e. with larger ratios μ_M^2/α_M and diminished gas temperatures $T < 300$ K; the carrier gas should be xenon $(m_1/m_{Xe} \ll 1)$ and the ratio $\rho = n_M/n_{Xe}$ should be varied systematically between 10^{-6} and 10^{-3} .

References

- 1. Su T, Bowers MT (1979) Classical ion-molecule collision theory. In: Bowers MT (ed) Gas phase ion chemistry, vol. 1. Academic Press, New York, pp 83-118
- 2. Bass L, Su T, Chesnavich WJ, Bowers MT (1975) Chem Phys Lett 34:119-122
- 3. Prigogine I, Xhrouet E (1949) Physica 15:913-932
- 4. Schmidt R, Stiller W (1985) Chem Phys Lett 28:353-357; Contr Plasmaphys 23:41-49
- 5. Pyun CW (1968) J Chem Phys 48:1306-1311; (1969) J Chem Phys 50:2782-2783
- 6. Koura K (1981) J Chem Phys 74:6742-6745
- 7. Mackay GI, Bohme DK (1978) Int J Mass Spectrom Ion Phys 26:327-343